
Types, Bytes, and Separation Logic

Harvey Tuch Gerwin Klein
Sydney Research Lab., National ICT Australia ∗,

Australia
School of Computer Science and Engineering, UNSW,

Sydney, Australia
{harvey.tuch|gerwin.klein}@nicta.com.au

Michael Norrish
Canberra Research Lab., National ICT Australia,

Australia
michael.norrish@nicta.com.au

Abstract
We present a formal model of memory that both captures the low-
level features of C’s pointers and memory, and that forms the basis
for an expressive implementation of separation logic. At the low
level, we do not commit common oversimplifications, but correctly
deal with C’s model of programming language values and the heap.
At the level of separation logic, we are still able to reason abstractly
and efficiently. We implement this framework in the theorem prover
Isabelle/HOL and demonstrate it on two case studies. We show that
the divide between detailed and abstract does not impose undue
verification overhead, and that simple programs remain easy to
verify. We also show that the framework is applicable to real,
security- and safety-critical code by formally verifying the memory
allocator of the L4 microkernel.

Categories and Subject Descriptors F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs—Mechanical verification

General Terms Languages, Theory, Verification

Keywords Separation Logic, C, Interactive Theorem Proving

1. Introduction
Nearly All Binary Searches and Mergesorts are Broken. This was
the title of a short, widely read article by Joshua Bloch on Google’s
research blog [6]. Bloch had discovered a problem in his imple-
mentation of binary search in an array in the standard Java library.
The problem had remained unnoticed for nine years of widespread
deployment in the Java platform, and Bloch argues that it is in fact
about 50 years old as it can be found in most standard text-books.
What is remarkable about this error is that many of the text-book
and lecture implementations have been formally proven correct.

The problem is that the usual text-book view of state and values
in programming language semantics is an oversimplification. The
bug described by Bloch is a simple value overflow that occurs in

∗ National ICT Australia is funded through the Australian Government’s
Backing Australia’s Ability initiative, in part through the Australian Re-
search Council.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’07 January 17–19, 2007, Nice, France.
Copyright c© 2007 ACM 1-59593-575-4/07/0001. . . $5.00.

the computation of the average of two values: int mid = (low
+ high) / 2. For sufficiently large values of low and high this
statement is wrong. One version that works for all values is mid =
low + ((high - low) / 2).

Even in the light of industrially deployed programs failing be-
cause of this error, one is tempted to say that they are not really
wrong; that they work as long as int behaves like the integers of
mathematics, and that people should not be using values that are
too large. If the specification of binary search did have this pre-
condition explicitly stated, then this view would be defensible. Of
course it does not, because we would rather not think about the
messy world of finite values, finite memory, unsafe pointer oper-
ations, pointer alignment, and other low level constraints of real
programming languages when we are focusing on the interesting
parts of verifying a program. This view is not just wishful thinking:
it was, and in part still is, also widely believed that dealing with all
this detail in program verification is intractable, and that it obscures
the algorithmic part where errors are most likely. Nonetheless, it is
our thesis and contribution that we can indeed verify real programs
in real programming languages with their real semantics, and pro-
vide the hard correctness guarantees of formal software verifica-
tion, without sacrificing soundness and without drowning in detail.

Our verification methodology for programs in languages like C
is to use Hoare logic together with an automated verification con-
dition generator. Additionally, for pointer programs, we would like
to use separation logic [16, 25], which promises to be an efficient
and scalable method. However, existing implementations of sepa-
ration logic [31, 18] use simplifications that while convenient are
not directly suitable for C. For instance, they model the heap as a
function from integers to integers, or treat values on the heap as
atomic.

In contrast, we model the values and heap of the C programming
language in the theorem prover precisely. For overflow problems
we use the correct mathematical structure (e.g. finite integers). For
pointers, correct models are more complex. C’s view of memory is
that of an array of bytes coupled with various access restrictions.
Further, pointers have to be aligned, dereferencing the null pointer
is undefined, etc.

Using such a model directly is intractable for verifying real
programs. Our contribution is to reconcile this model with con-
venient, abstract notation and reasoning. Our framework supports
both, normal Hoare logic and a sound separation logic, by instanti-
ating Schirmer’s Hoare logic environment [27]. Schirmer provides
a generic imperative language with operational semantics, Hoare
logic, and generic state in Isabelle/HOL. We instantiate this to C
on the one side, and provide optional separation logic notation for
assertions on the other side. At the heart of our work stands the
observation that although languages like C are not type-safe, and
although many programs do not always use pointers in a type-safe

C translation
HOL source
embedding

HOL proof
obligations

C semantics
(incl. memory

model)

Machine-
checkable proof

Verification
condition

generation

+

Annotated C
source code

Interactive
proof

Figure 1. The C verification process. User-supplied components
indicated with shading.

way, the majority of pointer operations in any given program are
well-behaved and can be treated in the abstract text-book way.

In previous work [28], we showed that the low-level view of
the heap as an array of bytes can be soundly unified with a view
of multiple abstract heaps of abstract values. We provided an im-
plementation of this unified memory model in Isabelle/HOL and
applied it to the verification of page tables in the L4 microkernel.
In this paper, we extend this work by making it more concrete and
more firmly grounded in reality on the one side, and more abstract
and better suited for high-level verification on the other side:

• We harden our implementation so that it accurately reflects the
real semantics of a significant, strict subset of the C program-
ming language. C programs as accepted by standard C com-
pilers can be read directly into the theorem prover. We also
show how to add a number of low-level semantic restrictions
like pointer alignment and automatic NULL-dereference guards
without incurring undue verification overhead.

• We extend and generalise the memory model to support separa-
tion logic constructs, and we implement a shallow embedding
of separation logic with the frame rule on top of this model in
Isabelle/HOL. This constitutes the first sound implementation
of separation logic for a mainstream programming language.

• We show two case studies in this setting: a simple list reversal,
and a full formal verification of the L4 kernel memory allocator.
We use the list reversal example to demonstrate the model
and to show that easy programs remain easy to verify. The
memory allocator study shows the applicability of the model
and verification of real, security critical programs. It also gives
an example of a program that cannot be verified formally in the
traditional setting without losing soundness.

• Finally, we use the two case studies to evaluate separation logic
against traditional Hoare logic. To our knowledge this is the first
such evaluation of separation logic in one unified setting.

Fig. 1 shows the process of verifying a C program in our set-
ting. The user (the program verifier) provides a normal C pro-
gram that contains invariant and pre/post annotations in comments.
Optionally, the user may also provide an Isabelle/HOL specifica-
tion with definitions used in these annotations. Building on our
model of memory, separation logic, and the semantics of C, the pro-

gram is then translated into an imperative program in Isabelle/HOL.
Schirmer’s VCG generates the proof obligations. Proving these is
where most of the user-work happens and the process will usually
result in changes to the annotations and/or program until a proof is
found. The soundness of this setup depends on translating C pro-
grams correctly to their Isabelle counterparts, on the correctness
of the memory model (both of which we present here), and on the
VCG (which Schirmer has proved sound in Isabelle [27]).

Our work is motivated by a project to formally verify the func-
tional correctness of the L4 microkernel [17]. While we concen-
trate on operating-system-level code and Isabelle/HOL in our case
studies and implementation, we believe that this work is widely
applicable. The basic technique generalises to other low-level lan-
guages and is orthogonal to developing an operational semantics for
the statements of the language. We concentrate on a precise model
of state, values, and memory. The implementation in the theorem
prover uses features specific to Isabelle (e.g. type classes) to opti-
mise proof productivity, but the model should be implementable in
different provers like PVS using slightly different mechanisms.

2. Notation
Our meta-language Isabelle/HOL conforms largely to everyday
mathematical notation. This section introduces further non-stan-
dard notation and in particular a few basic data types along with
their primitive operations.

The space of total functions is denoted by⇒. Type variables are
written ′a, ′b, etc. The notation t :: τ means that HOL term t has
HOL type τ . The option type

datatype ′a option = None | Some ′a

adjoins a new element None to a type ′a. We use ′a option to model
partial functions, writing bac instead of Some a and ′a ⇀ ′b instead
of ′a ⇒ ′b option. The Some constructor has an underspecified
inverse called the, satisfying the bxc = x. Function update is
written f (x := y) where f :: ′a ⇒ ′b, x :: ′a and y :: ′b and f (x 7→ y)
stands for f (x := Some y). We use {7→} for updating whole sets.
Domain restriction is f �A where f :: ′a ⇀ ′b and (f �A) x = (if x ∈ A
then f x else None).

Finite integers are represented by the type ′a word where ′a
determines the word length. For succinctness, we use abbreviations
like word8 and word32. The functions unat and of-nat convert
to and from natural numbers (with u for unsigned). The notation
{w..+n} stands for the interval starting at the word w with n::nat
elements, possibly wrapping around to zero.

Hoare triples are written {|P|} c {|Q|} where P and Q are asser-
tions and c a program. In assertions, we use the syntax ´x to refer
to the program variable x in the current state, while σx means x in
state σ. Program states can be bound in assertions by {|σ. P|}.

Isabelle supports axiomatic type classes [32] similar to, but
more restrictive than Haskell’s. The notation ′a::ring restricts the
type variable ′a to those types that support the axioms of class ring.
Type classes can be reasoned about abstractly, with recourse just
to the defining axioms. Further, a type τ can be shown to belong
to a type class given a proof that the class’s axioms hold in τ . All
abstract consequences of the class’s axioms then follow for τ .

Isabelle theories can be augmented with LATEX text which may
contain references to Isabelle theorems (by name—see chapter 4 of
[23]). We use this presentation mechanism to generate the text for
most of the definitions and all of the theorems in this paper, taking
them directly from the Isabelle proofs.

3. Translation of C
In our domain, C programs are happy to exploit C’s low-level
features. We cannot pretend that we are verifying a pseudo-Pascal

int i = 0, a[2] = {0,0};
int f(void) { i++; return i; }

/* will return either 0 or 1 */
int main(void) { a[i] = f(); return a[0]; }

Figure 2. A non-deterministic C program

with integer values of infinite range. In this section, we briefly
describe the C dialect that we require, and how our translation of
this dialect handles many of C’s low-level complications. A number
of memory specific details are further discussed in Sect. 4.

Syntactically, our C dialect is a C subset. We must be able to
pass implemented C source code to standard compilers (on whose
correctness we implicitly rely), but we do also impose some syn-
tactic restrictions on developers. For example, we make some sim-
plifications that have no deep semantic impact, such as requiring
all struct declarations to occur at the top-level of a translation
unit. Rather more significantly, we prohibit side effects in almost
all expressions. Assignments become statement-forms, and func-
tions that return values may be called only as the right-hand side of
an assignment.

Semantically, we make a number of assumptions about the na-
ture of the environment in which our C code will be executing.
These move the C we are verifying away from the standard’s ideal
of strict conformance. When writing applications, such assump-
tions are often a sign of programmer laziness, and a harbinger
of pain when code is ported. At the systems level, these assump-
tions are unavoidable. We categorise them using the standard’s
terms for describing varying (and illegal) program behaviours:
implementation-defined, unspecified, and undefined.

Implementation-defined behaviours are the easiest to treat.
These behaviours are those on which the standard places broad re-
strictions, but where it also requires that the implementation make
a particular (and documented) choice of behaviour.

For example, an implementation must choose the size of its
character type (typically 8 bits), the size of other integral types in
terms of bytes (int values are now typically four bytes), the en-
dianness of integral types, how negative numbers are represented
(typically two’s-complement), and how integer division behaves
with negative arguments. Most of the time, compilers choose to
reflect the decisions made by the underlying hardware architecture.
As we know the nature of the architecture for which we are de-
veloping our code, we add these decisions as extra assumptions
to the verification process. This does mean that the same source-
code does need to be verified anew for each underlying architecture
where it is to be deployed. Depending on the program this could
amount to merely re-running the proof.

Unspecified behaviours occur when the standard permits an im-
plementation to vary its behaviour, but does not require any docu-
mentation of this variation. Indeed, an implementation is not re-
quired to make a particular choice consistently. This allows optimi-
sation to drive the choice of behaviour. The most significant place
where behaviour is unspecified is in order of evaluation, of argu-
ments to assignments, of arguments of binary operators such as +
and /, and of arguments to function calls.

Most C expressions that appear to induce different behaviours
because of this under-specification are actually examples of unde-
fined or illegal behaviour. This is because of the strong restrictions
on the way in which programs are allowed to read and write mem-
ory. Nonetheless, it is possible to write legal, non-deterministic C
programs. One such appears in Fig. 2.

By making all expressions side-effect free, and making assign-
ments and function calls statement forms, we eliminate a whole

class of undefined behaviours. By further requiring that functions
may only be called in contexts where their return value is ignored,
or where it is assigned to a single variable (which restriction the
program in Fig. 2 violates), we ensure that all code must have only
one possible behaviour, unless we choose to work from deliber-
ate underspecifications, as might happen with an implementation
of malloc.1

For other unspecified behaviours, such as the values of possi-
ble padding bits in integer representations, our knowledge of the
underlying architecture means we know how the machine will be-
have, and our verification can exploit this.

Undefined behaviours occur when a program attempts to do
something illegal, such as dereferencing a null pointer, or doing an
integer division by zero. It is part of the devil’s pact that program-
mers make when they program in C that implementations are not
required to trap such events. Instead, implementations are free to
do anything at all, and again, there is no requirement that their un-
defined behaviours be documented. This feature of C makes testing
difficult, but when verification is performed we can explicitly make
sure that undefined behaviours can not occur.

One approach to this verification task is to use explicit guards.
Guards are extra program annotations, similar to assertions users
can provide with the standard assert function. In order to be ver-
ified with respect to any specification, a program must have all of
its guards shown to hold when they are encountered. For every pos-
sible undefined behaviour, we generate guards that are sufficient to
ensure that the undefined behaviour cannot occur. If done manu-
ally, this process of annotating programs with guards might lead to
guards being omitted, but by generating guards mechanically we
can ensure that all those we wish to treat are indeed generated.

Guards that we include prevent division by zero, dereferencing
the null pointer, and dereferencing an improperly aligned pointer.
One further guard is the test that all memory-writes are to allocated
memory. We use this guard to show a form of memory safety in
Sect. 5.3 as a proof convenience but it may be omitted from the
semantics when considering systems code at the verifier’s discre-
tion. A stricter semantics for application verification would require
such a guard always. This flexibility in choosing our code’s envi-
ronment is another reason in favour of the guards-based approach:
it is straightforward to enable different sorts of guards depending
on circumstances. For example, in some kernel verifications, deref-
erencing the null pointer might be a valid way of accessing the first
element of the machine’s exception vector. If this was the case, the
null pointer guard would need to be disabled. In this way, we can
give definition to a variety of behaviours that the standard leaves
undefined. Our systems code will not be strictly conforming, but in-
deed this line was crossed when our code relied on implementation-
defined aspects of the programming environment.

Finally, generating guards is straightforward: as expressions are
translated into the verification environment, forms that may cause
difficulties are recorded. When the translation of the enclosing
statement has finished, it can be preceded by the appropriate checks
on the given expressions. Because of our syntactic restrictions
preventing side effects, the repeated evaluation (as guard, and in
the original expression) of these sub-expressions is sure to be safe.

Our aim is to make verification part of the engineering process.
Crucially, the engineering process does not produce source code in
one phase and then stop, with verification taking over from imple-
mentation. Rather, implementation continues at the same time. In

1 Our restriction on the use of function calls may appear draconian. It for-
bids not only f(x) + g(y), but also x + f(y). Two unexplored options
are possible. We might annotate some function calls as side-effect free, and
then allow these functions to be called within expressions. Alternatively,
rather than have the programmer do so by hand, we might compile such ex-
pressions into a linearised form that forced a particular order of evaluation.

order to tie verification effort to the source code that is verified, we
annotate source code with Isabelle invariants and specifications.

4. A Unified Memory Model for Pointers
When verifying C programs that may break many of the com-
monly employed abstractions described in the introduction we face
a dilemma. Since convenient simplifications must be discarded we
require detailed and cumbersome low-level models. This may in-
crease the difficulty of the verification task, in particular when us-
ing an interactive theorem prover, where this detail is exposed to
the program verifier. We take soundness to be non-negotiable, yet
some abstraction is also required for tractability.

In this and the next section we focus on resolving this difficulty
for the C memory model. We describe both a low-level semantic
model based on finite byte-addressable memory and connections
to two high-level proof abstractions—multiple typed heaps and
separation logic. The latter can safely be used when programs
remain inside a type-safe fragment. Since most code remains in
this fragment in practice, even in the systems domain, we gain
soundness while alleviating the additional burden on the program
verifier in the common case.

4.1 Semantic model
It is common in language semantics to treat the heap or memory as
a partial function int ⇀ lang-val, where int is the type of addresses
and lang-val the type of all language values. While greatly simpli-
fying the formalisation, this makes several assumptions that are not
valid in our setting:

• Addresses range over an infinite integer type. In C addresses
are constrained by a finite addressable memory, which affects
the semantics of pointer arithmetic and memory allocation, e.g.
*(x+1) = y may in fact be a null pointer dereference.

• Values representations are atomic. C language types have rep-
resentations spanning multiple locations, and it is possible to
have value updates at one location affect values in other cells.
This calls for a semantic model that both captures values’ stor-
age sizes, and reflects these update semantics accurately. E.g.
*x = 0xdeadbeef affects not only the byte at location x, but
also the bytes at locations x + 1, x + 2, and x + 3. An ad-
ditional complication is alignment: per-type restrictions on ad-
dress validity. For example, 16-bit short values may be forced
to be stored at even addresses. Expressing alignment conditions
in dereferencing and update semantics requires having a con-
stant byte granularity for addressing.

• Heap partiality. Heap partiality is often used in the heap deref-
erencing semantics in memory or type-safety checks. Much
weaker variants of these properties hold for C programs and
it is not always necessary to introduce them in the dereference
semantics. This is particularly important in making it possible
to verify low-level code that manages details such as the lay-
out of its own address space or implements the functionality of
malloc.

Earlier work [28] solved a similar problem, where the aim was
to reconcile the low-level C memory model and the abstraction
of multiple typed heaps. We present that semantic model here, to-
gether with a significant extension of the heap abstraction. In partic-
ular, we remove the well-formedness invariant previously required,
add general support for guards that protect against undefined be-
haviours, and in Sect. 5 employ it as the basis of a separation logic
embedding.

In our model, heap memory state is described as a total function
from addresses, represented by a wordn type corresponding to the

machine address type, to bytes, also a wordn type. Arithmetic
operations on wordn values are modulo 2n. For example, on a
machine with 32-bit addresses and 8-bit bytes the heap memory
state will be:

addr = word32
byte = word8
heap-mem = addr ⇒ byte

Each language type is assigned a unique type in the theorem
prover’s logic. This allows for both an intuitive definition of lan-
guage operators as functions in HOL, and the harnessing of the
theorem prover’s type inferencing mechanism to avoid unnecessary
type annotations in assertions and proofs. All such types belong to
an axiomatic type class ′a::c-type in Isabelle, which introduces con-
stants that connect the low-level byte representation and the HOL
values:

to-bytes :: ′a::c-type ⇒ byte list
from-bytes :: byte list ⇀ ′a::c-type
typ-tag :: ′a::c-type itself ⇒ typ-tag
typ-info :: ′a::c-type itself ⇒ typ-info

The functions to-bytes and from-bytes convert between Isabelle
values and lists of bytes suitable for writing to or reading from the
raw heap state. The function typ-tag associates a unique type tag
with each ′a::c-type, providing a means of treating language types
as first-class values in HOL. Finally, typ-info provides enough
structure to allow size and alignment information for the type to
be calculated. We can then use this to define functions size-of
:: ′a::c-type itself ⇒ nat and align-of :: ′a::c-type itself ⇒ nat
respectively.

The following conditions, captured in the axiomatic type class
′a::mem-type, must hold for any ′a::c-type we want to use in our
heap abstraction below:

from-bytes (to-bytes v) = bvc
|to-bytes (x:: ′a)| = size-of TYPE(′a)

0 < size-of TYPE(′a)

size-of TYPE(′a) < addr-card

align-of TYPE(′a) dvd addr-card

These conditions follow mostly from requirements in the C stan-
dard, e.g. fixed size representations, with the exception of the final
alignment constraint which we add to make pointer arithmetic bet-
ter behaved, and which holds on all the C implementations we are
aware of. The constant addr-card represents the size of the address
space, e.g. 232.

Finally, we introduce a distinct Isabelle pointer type for each
Isabelle type, used to model C pointer types:

datatype ′a ptr = Ptr addr

The additional ′a on the left-hand side can now be used to associate
the pointer type information with pointer values in Isabelle’s type
system. Since the type variable does not appear on the right-hand
side it is a phantom type. Nonetheless, the type information is
used to constrain the action of various pointer operators by making
use of the type information associated with ′a. The destructor
ptr-val retrieves the address from a pointer value. The pointer types
′a::c-type ptr can be shown to be to be instances of ′a::mem-type.
An example of the use of the phantom type variable comes in the
definition of pointer addition, adding a word n to a pointer p:: ′a ptr:
p +p n = Ptr (ptr-val p + n ∗ of-nat (size-of TYPE(′a)))

Another example of the utility of such polymorphic definitions
is the pointer alignment guard from Sect. 3:
ptr-aligned (p:: ′a ptr) ≡ align-of TYPE(′a) dvd unat (ptr-val p)

...

heap_mem

204

136

42

98

0

1

0

0

34

65

20

...

204

136

42

98

byte list

1646954700

int
size_of TYPE(int)

heap_update_list

heap_list

to_bytes

from_bytes

Figure 3. int heap representation

In this work we deal primarily with C’s base and pointer types
but it is possible to extend this to compound types. Array indexing,
access, and update semantics can be expressed in terms of the cor-
responding pointer semantics. C’s struct types can be translated
to Isabelle record types, however the models in this paper require
extending when fields have their address taken2 or padding is in-
volved. Similarly, union types can be treated as datatypes when a
tag field can be identified, and otherwise translated to type-casts.

Low-level heap access and update Heap dereferences in expres-
sions, e.g. ∗p + 1 are given a semantics by first lifting the raw heap
state with the polymorphic lift function, e.g. lift s p + 1 where s is
the current state. The definition of lift is presented below, together
with that of heap-update, providing semantics for heap updates.
For example, ∗p = ∗q + 5 is translated to the state transformer λs.
heap-update p (lift s q + 5) s. Fig. 3 illustrates the value transfor-
mations involved.
heap-list :: heap-mem ⇒ nat ⇒ addr ⇒ byte list

heap-list h 0 p = []

heap-list h (Suc n) p = h p·heap-list h n (p + 1)

h-val :: heap-mem ⇒ ′a::c-type ptr ⇀ ′a

h-val h p ≡ from-bytes (heap-list h (size-of TYPE(′a)) (ptr-val p))

lift :: heap-mem ⇒ ′a::c-type ptr ⇒ ′a

lift h ≡ λp. the (h-val h p)

heap-update-list p [] h = h

heap-update-list p (x·xs) h = heap-update-list (p + 1) xs (h(p := x))

heap-update p v h ≡ heap-update-list (ptr-val p) (to-bytes v) h

4.2 Typed heaps
While it is possible to do proofs about programs directly with this
semantics, it is rather complicated to do so. Problems quickly arise
when the potential for overlapping value representations on the
heap and aliasing between lifted typed heaps complicate heap up-
date post-conditions. This is an example of the aliasing [8] prob-
lem inherent in pointer program proofs being further compounded
by the low-level semantic model utilised. We call this represen-
tation overlap problem inter-type aliasing for the purpose of this
paper; see Fig. 4 for an example of this. In this section we present
an abstraction from our semantic model, together with appropriate

2 We also have not required supporting the & operator for local variables
yet. These could be modelled explicitly in the heap-mem.

...

heap_mem

204

136

42

98

0

1

0

0

34

65

20

...

6433416

...

...

...

204

136

...

addr⇀ int

addr⇀ char

1646954700

Figure 4. Inter-type aliasing

rewrite rules connecting the models, that avoids reasoning about
this kind of aliasing when programs remain in the type-safe frag-
ment of C.

In this type-safe fragment, a convenient model for a type-safe
language would be based on explicit multiple typed heaps, one
for each language type, e.g. addr ⇀ char, addr ⇀ short. While
this avoids the problem of inter-type aliasing and greatly simplifies
proofs, it does not allow us to escape the type-safe world. The lift
function provides a view of multiple typed heaps, but values in a
lifted ′a heap change when the heap is updated through a ′b ptr.

However, inside the type-safe fragment, there is an implicit
mapping between memory locations and types, and heap derefer-
ences respect this mapping. We introduce this mapping as an addi-
tional state component, and refer to it as the heap type description.

heap-typ-desc = addr ⇀ typ-tag option

The heap type description is a history variable, and as such does
not affect the semantics of our programs. Since in C this mapping
cannot be extracted from the source code, the program verifier
adds proof annotations that update the heap type description. The
overhead of these annotations is very low relative to the proof
effort because the intended type for a region of memory changes
infrequently—mainly for alloc and free.

The heap type description is partial, since it only maps memory
actually used by the program. Each value representation has the
typ-tag corresponding to its type stored at the base address. The
rest of the heap footprint of the value is also mapped, but with
a None value padding instead of a tag, making heap validity, as
defined below, monotonic, a useful property in the development
of the separation logic embedding. Without padding we would also
have the additional requirement of a well-formedness invariant [28]
on the heap type description.

We write d,g |=t p to mean that the pointer p is valid in heap
type description d with guard g. The definition is straightforward:

valid-footprint d x t n ≡ d x = bbtcc ∧
(∀ y. y ∈ {x + 1..+n − 1} −→ d y = bNonec)

d,g |=t p ≡ valid-footprint d (ptr-val p) (typ-tag TYPE(′a))
(size-of TYPE(′a)) ∧

g p

The guard g strengthens the assertion to restrict validity based on
the language’s pointer dereferencing rules. For example, alignment

...

heap_mem

204

136

42

98

7

1

0

0

34

65

20

...

size_of TYPE(int)

...

┗int_tag┛
None

None

None

-

┗char_tag┛

┗int_tag ┛

None

-

...

heap_typ_desc

None

Nonesize_of TYPE(int)

size_of TYPE(char)

a

c

d

align_of TYPE(int)

align_of TYPE(int)

align_of TYPE(int)

align_of TYPE(char)

align_of TYPE(char)

align_of TYPE(char)

align_of TYPE(char)

align_of TYPE(char)

align_of TYPE(char)

align_of TYPE(char)

align_of TYPE(char)

align_of TYPE(char)

align_of TYPE(char)

align_of TYPE(char)

align_of TYPE(char)

b

Figure 5. Example heap state

can be captured with d,ptr-aligned |=t p. In the interests of conci-
sion, we occasionally omit g hereafter.

An example heap memory and type description state is given in
Fig. 5. Here htd,ptr-aligned |=t a and htd,ptr-aligned |=t c, but
¬ htd,ptr-aligned |=t b and ¬ htd,ptr-aligned |=t d. The pointer
b::char ptr is not valid because the correct heap footprint is missing
from the heap type description, and d::int ptr is not valid because it
is not aligned.

The ptr-tag function updates a heap type description so that it
encompasses a pointer, i.e. g p =⇒ ptr-tag p d,g |=t p:

ptr-clear p n d ≡ d({ptr-val p + 1..+n − 1}{7→}None)

ptr-set p t d ≡ d(ptr-val p 7→ btyp-tag tc)

ptr-tag (p:: ′a::c-type ptr) ≡
ptr-set p TYPE(′a::c-type) ◦ ptr-clear p (size-of TYPE(′a::c-type))

Heap type description update annotations are written in C com-
ments. The syntax AUXUPD takes a guard and a heap type de-
scription state transformer as a parameter. E.g. to indicate that the
location at p now is the value of a valid pointer of type addr ptr, we
write /∗∗ AUXUPD: (g, ptr-tag (´p::addr ptr)) ∗/.

The following two-stage lifting process provides an abstract
heap view for proofs:

1. The first stage results in an intermediate heap-state:

heap-state = addr ⇀ typ-tag option × byte

The function lift-state filters out locations that are None in the heap
type description, removing values that should not affect the final
lifted typed heaps. Equality between lifted heaps is then modulo
the heap type description domain.

lift-state ≡ λ(h, d) x. case d x of None ⇒ None | btc ⇒ b(t, h x)c

Lifted validity and heap-list are expressed on heap-states with
d,g |=s p and heap-list-s respectively in the obvious way.

2. The second lifting stage results in typed lifted heaps again.
The lift-typ-heap function restricts the heap domain so that the
only values affecting the resultant heap are inside the heap footprint
of valid pointer values. Equality is now modulo pointer validity.

lift-typ-heap g s ≡ (from-bytes ◦ heap-list-s s (size-of TYPE(′a)) ◦
ptr-val)�{p | s,g |=s p}

Note that it is not sufficient to just restrict the domain to addresses
possessing the alignment of the lifted heap’s type in order to avoid
overlapping value representations, since the alignment of a type can
be smaller than its footprint size: in our semantics the relationship
between alignment and size is given by align-of t dvd size-of t.

...

heap_mem

204

136

42

98

7

1

0

0

34

65

20

...

...

┗int_tag┛
None

None

None

-

┗char_tag┛

┗int_tag ┛

None

-

...

heap_typ_desc

None

None

...

(┗int_tag ┛,204)

(None,136)

(None,42)

(None,98)

-

(┗char_tag┛,1)

(┗int_tag ┛,0)

(None,65)

-

...

(None,34)

(None,0)

-

-

...

...

-

-

-

addr⇀ int

addr⇀ char

1646954700

-

-

-

-

-

-

1

-

...

...

lift_state lift_typ_heap

heap_state

Figure 6. Two-stage lifting

The two stages, shown in Fig. 6, are combined with liftτ :

liftτ g ≡ lift-typ-heap g ◦ lift-state

Like lift, liftτ is polymorphic and returns a heap abstraction of type
′a typ-heap = ′a ptr ⇀ ′a. The program text itself can continue to
use the functions lift and heap-update, while pre/post conditions
and invariants use the stronger liftτ to make more precise state-
ments. The following conditional rewrite connects the two levels:

liftτ g (h, d) p = bvc =⇒ lift h p = v

We have proved two further significant rewrite rules that support
reasoning about the effects of heap updates on liftτ . The first rule
states how an ′a ptr update affects an ′a typ-heap, the second rule
shows that an ′a ptr update does not affect a ′b typ-heap if ′a is
different from ′b:

d,g |=t p =⇒ liftτ g (heap-update p v h, d) = liftτ g (h, d)(p 7→ v)

[[d,g ′ |=t p; typ-tag TYPE(′a) 6= typ-tag TYPE(′b)]]
=⇒ liftτ g (heap-update p v h, d) = liftτ g (h, d)

These, added to the default simplification set with other heap-
related lemmas, do not require manual application. The typ-tag
TYPE(′a) 6= typ-tag TYPE(′b) condition can be resolved auto-
matically, as long as the type tag definitions for language types are
also in the simplification set.

For any program that respects the heap type description, we can
thus automatically simplify away the fact that the heap is shared
and pretend to work on multiple typed heaps. At the same time,
we can still capture the semantics of type-unsafe operations. In the
unsafe case, things are no longer automatic, and we require new
rules to be proven in terms of the underlying lift and heap-update,
as was previously required anyway.

5. Separation Logic
The previous section presents a proof technique that tames inter-
type aliasing. However, the problem of intra-type aliasing remains,
where two valid same-typed pointers may have identical values.
Dealing with this often requires explicit anti-aliasing invariants
on typed heaps, a problem that has been recognised in the litera-
ture [8]. Separation logic [16, 25] provides an approach in which

anti-aliasing information may be expressed implicitly in assertions,
potentially simplifying specifications and proofs. In this section we
present a development of separation logic based on the preceding
memory model.

5.1 Shallow embedding
Below we describe a shallow embedding for separation assertions,
where the semantic constructs of assertions are translated to HOL,
as opposed to a deep embedding where the syntax of assertions
would be considered a distinct type in the logic. There is a tradeoff
involved in the choice of embedding approach—shallow embed-
dings are often more pragmatic and expressive, while deep embed-
dings allow for language metatheory reasoning and proof optimi-
sations [33]. We opt for the former since our focus here is on the
verification task.

We model separation assertions as predicates on heap-states,
applied in assertions of the verification environment to the result
of the first lifting stage of Sect. 4.2. For example, a loop invari-
ant with the separation assertion P and heap memory and type
description state in the variables h and d respectively is written
{| P (lift-state (´h,´d)) |}, which we abbreviate as {|Psep|}.

As in the development of Reynolds we have an empty heap
predicate:

� = (λs. s = empty)

The definition of the singleton heap assertion is more involved in
our embedding, and is provided below. p 7→g v asserts that the heap
contains exactly one mapping matching the guard g, at the location
given by pointer p to value v.

p 7→g v = λs. lift-typ-heap g s p = bvc ∧
dom s = {ptr-val p..+size-of TYPE(′a)}

The guard is an addition to the usual p 7→ v and serves the same
purpose as in Sect. 4.2, i.e. strengthening the assertion to aid in
discharging guard proof obligations.

There are two significant separation connectives, conjunction
and implication:

s0 ⊥ s1 = dom s0 ∩ dom s1 = ∅
s0 ++ s1 = λx. case s1 x of None ⇒ s0 x | byc ⇒ byc
P ∧∗ Q = λs. ∃ s0 s1. s0 ⊥ s1 ∧ s = s1 ++ s0 ∧ P s0 ∧ Q s1
P −→∗ Q = λs. ∀ s ′. s ⊥ s ′∧ P s ′−→ Q (s ++ s ′)

The definitions are standard, with the intuition behind separation
conjunction that (P∧∗ Q) s asserts that s can be partitioned into two
subheaps such that P holds on one subheap and Q on the other. This
allows for predicates on the heap to be written that conveniently
include anti-aliasing information.

Some additional mapping assertions are useful:

sep-true = λs. True
p 7→g − = λs. ∃ v. (p 7→g v) s
p ↪→g v = p 7→g v ∧∗ sep-true
p ↪→g − = λs. ∃ x. (p ↪→g x) s

The standard commutative, associative, and distributive properties
apply to the connectives, and we have formalised pure, intuitionis-
tic, domain, and strictly exact assertions and their properties [25].
We require a stronger definition of the singleton heap assertion for
it to be strictly exact. Some of these properties are routinely used in
proofs and have been grouped in simplification sets and/or added
to the default simplification set.

Since this is a shallow embedding, standard HOL connectives
and quantifiers can be freely mixed with the separation connectives,
e.g. λs. P s ∧ (Q ∧∗ R) s.

A key feature of this embedding is that it avoids the problem
of skewed sharing [25]. This is essentially the problem of inter-
type aliasing in separation logic. An approach like ours, where a
history variable is introduced, was suggested as a future direction

for separation logic by Reynolds. We have developed this, have a
machine-checked formalisation and have deployed it in real-world
verification examples (see Sect. 6).

Another notable gain from our development is the harnessing
of Isabelle’s type inference to avoid explicit type annotations in
assertions. Since language types are assigned Isabelle types and
pointer types are derived from these, asserting that p 7→ v, where p
is a program variable automatically constrains the type of v.

5.2 Lifting proof obligations
Our verification condition generator applies weakest precondition
rules to transform Hoare triples to HOL goals that can then be
solved by applying theorem prover tactics. In Sect. 4.2, rewrites
were given that could automatically lift the raw heap component
of these proof obligations, and in this section we provide rules
that allow the low-level applications of lift and heap-update to
be expressed in terms of separation assertions. This is desirable
as reasoning can then use the derived rules for these assertions at
the separation logic level, whereas the alternative of unfolding the
definitions produces a massively more complex goal and proof.

The approach taken here is quite different to the usual separa-
tion Hoare logic proof technique employed in the literature, where
a new Hoare logic is developed based on separation logic and indi-
vidual rules are applied at the Hoare logic level. The advantage of
our approach is two-fold: we avoid having to manually apply Hoare
rules, a task easily automated, and can take advantage of an existing
verification framework and condition generator. On the other hand,
applying the rules in this section requires the program verifier to
understand the relationship between components of the HOL goals
and the original program since this structure is lost during verifica-
tion condition generation.

The following rule connects lift and separation mapping asser-
tions:

(p ↪→g v) (lift-state (h, d))

lift h p = v

An example of how this may be used is the Hoare triple
{|(p ↪→ x ∧∗ Q)sep|} a = ∗p + ∗p {|a = 2 ∗ x|}.

The resulting proof obligation
(p ↪→ x ∧∗ Q) (lift-state (h, d)) =⇒ 2 ∗ lift h p = 2 ∗ x

requires the value of x in terms of lift h p or vice versa. By deriving
from the assumption of the goal that (p ↪→ x) (lift-state (h, d))
using normal rules of separation logic, the above rule can be applied
to solve the goal.

Heap update dereferences produce proof goals of the form
P (lift-state (h, d)) =⇒

Q (lift-state (heap-update p0 v0 (heap-update p1 v1
(heap-update p··· v··· (heap-update pn vn h))),d))

To reduce heap-updates to a separation assertion on the original
state we first require a new separation predicate g `s p:

g `s p ≡ λs. s,g |=s p ∧ dom s = {ptr-val p..+size-of TYPE(′a)}

This is related to the idea of the singleton heap predicate p 7→g −,
but the implication only works in one direction, (p 7→g v) s =⇒ (g
`s p) s, since it is possible to have both liftτ g s p = None and a
valid footprint at p.

The following rules allow for the reduction of heap-updates:

(g `s p ∧∗ (p 7→g v −→∗ P)) (lift-state (h, d))

P (lift-state (heap-update p v h, d))

(g `s p ∧∗ P) (lift-state (h, d))

(p 7→g v ∧∗ P) (lift-state (heap-update p v h, d))

These rules are analogous to the backwards and global reasoning
Hoare logic mutation rules [25]. The first rule provides a weakest

precondition style rule that will match any separation assertion,
while the second rule may be used on goal assertions that can be
manipulated into the matching form.

When the heap type description is modified with ptr-tag the
resulting goal needs to be reduced in a similar manner. We provide
a rule for this that establishes separation validity from sep-cut,
another additional separation predicate. sep-cut simply asserts that
the locations in the heap-state domain are the supplied interval.

sep-cut x y ≡ λs. dom s = {x..+y}

(sep-cut (ptr-val p) (size-of TYPE(′a)) ∧∗ P) (lift-state (h, d))
g p

(g `s p ∧∗ P) (lift-state (h, ptr-tag p d))

The shallow embedding gives us the flexibility to add separation
predicates that express information about a region of memory at
different levels of abstraction, from p 7→g v to sep-cut. Once the
above reduction rules are applied the reasoning can continue using
the standard rules of separation logic without requiring additional
proof goals or side-conditions.

In deriving these rules we have primarily been concerned with
soundness, which we are forced to show prior to Isabelle admitting
the rules. Our focus on real-world verification examples has caused
us to pay rather less attention to the completeness of our system,
particularly as we know that we can always drop down to the lower
more concrete levels if required. However, completeness results
have been explored elsewhere in the literature [16, 34].

5.3 Frame rule
The separation frame rule [34] is often seen as important to scal-
ability. It allows for deriving a global specification from a local
specification of a program’s behaviour, with an arbitrary conjoined
separation assertion on a part of the heap preserved by the program.
In our embedding, this rule would have the form:

{|Psep|} c {|Qsep|}
{|(P ∧∗ R)sep|} c {|(Q ∧∗ R)sep|}

Unfortunately, such a general rule cannot be expressed in a shallow
embedding since (i) the state-space type is program dependent
and (ii) c is an arbitrary program in the underlying verification
framework for which this rule may not be true. It is however
possible to prove this rule for specific programs and state-spaces,
and in our development of the frame rule we automate and make
generic this process for our C subset.

We make further use of type classes to define ′a::heap-state-typ,
which provides access and update functions for the heap state and
heap type description. A concrete program’s state-space is instanti-
ated as a member of this type class using automatic Isabelle/HOL
tactics. The frame rule can then be expressed on programs c with a
state-space in ′a::heap-state-typ as:

{|Psep|} c {|Qsep|} mem-safe c

{|(P ∧∗ R)sep|} c {|(Q ∧∗ R)sep|}
The mem-safe c assumption is required as the second problem
arises from the dependence of this rule on a form of memory
safety. In order to prove soundness it is helpful that a program
generates a guard failure if it either (i) modifies the heap state or
heap type description outside of the initial domain of the heap type
description or (ii) depends on the heap type description outside
this domain in any expression. This is not the case for the normal
output of the C translation stage, since guards are only generated to
prevent undefined behaviour as our C semantics understands it.

To show mem-safe c we insert additional guards for memory
safety, e.g. for a heap update dereference asserting that the lvalue’s
heap footprint is contained entirely in the heap type description’s

word_t reverse(word_t *i) {
word_t j = 0;
while (i) {
word_t *k = (word_t*)*i;
*i = j;
j = (word_t)i;
i = k;

}
return j;

}

Figure 7. In-place list reversal

domain. It should be noted that we do not require type safety, nor
do we require this form of memory safety for most expressions
as only heap type description updates may depend on the heap
type description, i.e. the output of the C translation stage does not
feature heap type description accesses except in such updates.

With the generated guards in place, Isabelle discharges the
mem-safe c proof obligation automatically. The additional mem-
ory safety proof obligations obtained from the verification condi-
tion generator can be discharged with the aid of of a strengthened
precondition asserting that the required locations are a subset of the
heap type description’s domain.

The above presentation of the frame rule is somewhat simplified
in that P, Q and R are not functions of the local variable state. We
have also derived the more general rule where they are and R does
not depend on variables modified by c.

6. Case Studies
This section presents two case studies that demonstrate the sup-
port of abstract and low-level reasoning in our setting. Since we
have formalised both classical Burstall/Bornat-style pointer rea-
soning and separation logic in the same framework, we can give
a meaningful comparison of their applicability. While our results
support the folklore view that separation logic is well suited for
specification, but less convenient for verification, we find that the
difference becomes smaller for the larger, more realistic case study.
Since proofs can be checked, but specifications need to be under-
stood, this advocates the use of separation logic for more complex
verification tasks.

6.1 List reversal
This subsection shows a small example program—in-place reversal
of a list—with simple, abstract reasoning. The list is somewhat
unusual in that it has no content but the pointer values themselves.
Lists like these are used in OS code for instance, where they are
loosely part of larger data structures. Mehta and Nipkow [19] use
the same example in their more abstract setting. We achieve the
same style of reasoning and specification with almost the same
degree of automation.

Fig. 7 shows the code (where word t is unsigned int). Even
though the program is very simple, it already makes use of unsafe
pointer operations.

Classical setting
The pre/post specification of this program in a classical setting
(without separation logic) is:
∀ zs. {|list (liftτ H) zs ´i|}

´reverse-ret :== PROC reverse(´i)
{|list (liftτ H) (rev zs) (Ptr ´reverse-ret)|}

The idiom ´reverse-ret :== PROC reverse(´i) is the standard
form for procedure specification in Schirmer’s environment. The

variable reverse-ret is automatically generated and makes the return
value of function reverse available to the postcondition. We write
H = (´h, ´d) for the heap and type description in the current state.

The predicate list relates the heap pointer structure to abstract
lists. It takes a heap of word32 values, a list of word32 values, and
the start pointer of the list as arguments. Our definition is analogous
to the one in Mehta and Nipkow [19] (we additionally deal with
heap partiality):
list h [] i = i = NULL
list h (x·xs) i = ∃ j. ptr-val i = x ∧ x 6= 0 ∧ h i = bjc ∧ list h xs (Ptr j)

The loop invariant again is almost the same as in Mehta and
Nipkow. We use distinct to say that the list zs does not contain
duplicate addresses and rev to reverse the abstract HOL list:
{|∃ xs ys.

list (liftτ H) xs ´i ∧
list (liftτ H) ys (Ptr ´j) ∧ rev zs = rev xs @ ys ∧ distinct (rev zs)|}

As mentioned above, the proof of the 3 verification conditions
generated for this program is almost completely automatic (5 lines
of proof script). However, this has to be viewed in the context of
a careful setup of automated simplification rules for the abstrac-
tion predicate list that again we share with Mehta and Nipkow. It
consists of 13 lemmas, 12 of which are proven automatically. All
low-level guards were discharged automatically as well; they did
not play any role in the verification of this example.

Separation logic
The specification of the same program in separation logic is sim-
ilar on the pre/post level, but the abstraction predicate is defined
differently.
∀ zs. {|(list zs ´i)sep|}

´reverse-ret :== PROC reverse(´i)
{|(list (rev zs) (Ptr ´reverse-ret))sep|}

list [] i = λs. i = NULL ∧ � s
list (x·xs) i = λs. i = Ptr x ∧ x 6= 0 ∧ (∃ j. (i 7→ j ∧∗ list xs (Ptr j)) s)

The invariant is a bit shorter, because the separating conjunction
takes care of distinctness:
{|∃ xs ys. (list xs ´i ∧∗ list ys (Ptr ´j))sep ∧ rev zs = rev xs @ ys|}

The proof remains easy, but is not automatic any more and re-
quires some manual application of rules for separating conjunction.
This is not surprising, since separating conjunction is an existential
statement which usually leads to manual intervention. The proof
of the 3 verification conditions comes to a total of 32 lines, which
we might be able to improve with specialised tactics for separation
logic connectives. For example, one of the low-level guards was not
solved automatically, because the required precondition was under
a separating conjunction and had to be extracted manually. After
this, the proof was automatic.

In the separation logic case, there was no specific automation
setup for the list data structure apart from the lemma list xs NULL
= (λs. xs = [] ∧ � s) which brings the total proof effort for this
example to 62 lines, as opposed to 89 lines in the classical setting.
Most of these 89 lines could be reused for programs on the same
data structure, though, which is not the case for the separation logic
proof.

6.2 The L4 kernel memory allocator
The case study presented in this section concerns the verification
of the kernel memory allocator of the L4 microkernel with and
without separation logic in Isabelle/HOL. At the OS kernel level,
C library functions like malloc and free are not available yet,
but have to be provided internally. Since this code is run in the

kfree_list

KMC

NULL

..

Figure 8. Management data structure of the L4 chunk allocator

privileged mode of the hardware, it is directly security critical.
It is also the component that makes most critical use of unsafe
C operations (although other tricks like xor of pointers are used
elsewhere in L4). Three functions define the interface of this kernel
memory allocator:

void init(void *start, void *end)
void free(void *address, word t size), and
void *alloc(word t size).

We have verified alloc and free, but only have space to show
alloc; init consists of a call to free. The full proof document for
this case, including code and invariants is available online [29]. The
functions are not very large, but the fact that the originals contain
more than 50% tracing and debugging code indicates that they were
not easy to get right. We did not find any clear bugs in the code
during verification which is encouraging for a system with several
years of deployment. We did find two preconditions to free that
are not immediately obvious: the address must be word-aligned
(because it is used as a word pointer), and the sum of the address
and the size must not overflow. If free is only used with values
produced by alloc, and init is used with values as in L4, these
conditions will hold.

Currently, L4 is distributed in C++, although no essential use
of C++ features is made apart from using classes to structure the
code. For a number of reasons (not only verification), we are port-
ing L4 to C. The source code that is verified is taken from the
L4Ka::Pistachio distribution, ported, configured for the x86 archi-
tecture, and preprocessed. The manual porting is not soundness
critical as it is the result of the translation that will eventually run
together with the rest of the C port, neither is the configure nor pre-
processing part. If they are merely deterministic, we verify exactly
what the compiler sees as input.

Fig. 8 shows the internal data structure that is used to manage
memory. It is a NULL terminated, singly linked list of chunks of
memory of a fixed size KMC (1024 bytes in this case) starting with
the global variable word t *kfree list. The first 4 bytes of each
free memory block are used to point to the next one. The blocks are
often, but not always, adjacent in memory.

The implementation of alloc first searches for a contiguous
block of memory of the right size that is correctly aligned. It then
removes this block from the free list, zeroes out the memory region,
and returns a pointer to it. If no such block is found, the kernel has
run out of memory and alloc returns NULL. Fig. 9 shows the
input to the theorem prover with the invariant annotations removed
and formatting adjusted for the presentation.

Classical setting
The data abstraction predicate is very similar to the simple list of
Sect. 6.1:
k-list h s e [] = s = e

k-list h s e (p·ps) =
s = Ptr p ∧
s 6= e ∧ (∃ s ′. h s = bs ′c ∧ k-list h (Ptr s ′) e ps)

For the specification of alloc we first need to define what this
operation does in the abstract. For this, we are not interested in the
list structure itself, but just in the set of free memory chunks:

void * alloc(word_t size) {
word_t* prev, curr, tmp;
word_t i;
size = size >= 1024 ? size : 1024;
for (prev = (word_t*) &kfree_list, curr = kfree_list;

curr;
prev = curr, curr = (word_t*) *curr) {

if (!((word_t) curr & (size - 1))) {
tmp = (word_t*) *curr;
for (i = 1; tmp && (i < size / 1024); i++) {

if ((word_t) tmp != ((word_t) curr + 1024*i)) {
tmp = 0;
break;

};
tmp = (word_t*) *tmp;

}
if (tmp) {

*prev = (word_t) tmp;
for (i = 0; i < (size / sizeof(word_t)); i++) {

/** AUXUPD:
(ptr-safe (´curr +p ´i) ´d, ptr-tag (´curr +p ´i) ´d) */

curr[i] = 0;
}
return curr;

}
}

}
return 0;

}

Figure 9. alloc after configure and preprocessing.

free-set hp s e F = ∃ ps. k-list hp s e ps ∧ distinct ps ∧ F = set ps
alloc p l F = F − chunks p (ptr-val p + (l − KMC))

The function chunks p q in the definition above refers to a set
of locations starting with pointer p, ending with address q, that
consists of adjacent memory chunks only. With this, the pre/post
specification of alloc is:
∀F σ. {|σ. free-set (liftτ H) (ptr-coerce kfree-list-addr) NULL F ∧

aligned F ∧ KMC |u ´size|}
´alloc-ret :== PROC alloc(´size)
{|(´alloc-ret 6= NULL −→

free-set (liftτ H) (ptr-coerce kfree-list-addr) NULL
(alloc ´alloc-ret (max σsize KMC) F)) ∧

(´alloc-ret = NULL −→H = σH)|}

The precondition requires that kfree-list-addr describe some set
of free memory chunks F and that all addresses in F as well as the
requested size be aligned with KMC. The postfix -addr refers to the
fact that the code takes the address of the global variable kfree-list;
kfree-list itself can be accessed by a heap lookup at kfree-list-addr.
That means, kfree-list-addr is of type word32 ptr ptr. Since k-list
expects a word32 ptr, we use the function ptr-coerce to cast
it (as does the C code). Alignment is expressed using the non-
overflowing version of divisibility on finite integers with x |u y
= (unat x dvd unat y) and aligned F = (∀ p∈F. KMC |u p). The
postcondition refers to the pre-state σ for size and the heap.

The aligned predicate could be made part of k-list. We have
not done so here, because free does not require this condition
(although free preserves it if the base address is aligned with
KMC). It is interesting to note that the code, while it tests the size
alignment with an assertion (removed by the preprocessor here),
does not check base address alignment.

The postcondition has two cases: either some memory was
returned (´alloc-ret 6= NULL) or the kernel ran out of memory
(´alloc-ret = NULL). In the latter case, we claim that nothing
changes in the heap, including the global variable kfree-list. In the
former case, we say that the new set of free memory chunks is the
same that you would get by evaluating the abstract alloc.

This specification is not completely satisfying. In the success
case, we would ideally like to know that nothing else in the heap

changes. This “nothing else” is hard to nail down formally. The set
F as used in the specification above is too loose, it would miss the
heap changes caused by zeroing out the freshly allocated memory.
Separation logic will handle this more naturally below.

The proof of the verification conditions for alloc takes about
350 lines of proof script with 130 lines of specific supporting
lemmas and a further 1400 lines of lemmas shared between and
alloc and free in classical and separation logic settings.

Separation logic
The separation logic version of the abstraction predicate is the
following.
k-lists s e [] = λh. s = e ∧ � h

k-lists s e (p·ps) =
λh. (s = Ptr p ∧ s 6= e) ∧

(∃ s ′. (block s s ′∧∗ k-lists s ′ e ps) h)

block s s ′ =
λh. KMC |u ptr-val s ∧

(s ↪→ ptr-val s ′) h ∧
sep-cut (ptr-val s) KMC h

fsets s e F = λh. ∃ ps. k-lists s e ps h ∧ F = set ps
free-sets s e F = λh. ∃ x. (ptr-coerce s 7→ ptr-val x ∧∗ fsets x e F) h

The separation logic specification of alloc is then:
∀F σ. {|σ. (free-sets kfree-list-addr NULL F)sep ∧ KMC |u ´size|}

´sep-alloc-ret :== PROC sep-alloc(´size)
{|(´sep-alloc-ret 6= NULL −→

(free-sets kfree-list-addr NULL
(alloc ´sep-alloc-ret (max σsize KMC) F) ∧∗

zero ´sep-alloc-ret (max σsize KMC))sep) ∧
(´sep-alloc-ret = NULL −→
(free-sets kfree-list-addr NULL F)sep)|}

The precondition here is simpler than in the classical setting.
Since alignment is built into fsets using block, we only need data
abstraction and that the requested size is aligned to KMC.

The postcondition has the same two cases that occur in the clas-
sical setting. If we have run out of memory (´alloc-ret = NULL),
we now only say that F does not change (and, by frame rule, noth-
ing else in the heap changes either).

In the success case (´alloc-ret 6= NULL), we still state that the
new set of free memory chunks is the same that you would get
by evaluating the abstract function alloc. Additionally, we now
explicitly say that the memory returned is a separate, contiguous
block of the right size, filled with zero.

zero p n = zero-block (ptr-coerce p) (unat (n div 4))

zero-block p 0 = �
zero-block p (Suc n) = (p +p of-nat n) 7→ 0 ∧∗ zero-block p n

This zero-block is the sub-formula that can directly be used by
client code—it describes the freshly allocated memory. The post-
condition is stronger than the one in the classical case.

The proof of the verification conditions induced by this specifi-
cation takes about 650 lines of proof script with 750 lines of sup-
porting lemmas (plus the 1400 lines shared with the other parts of
the verification). This corresponds to 136 lines of code in the orig-
inal and 30 lines of code after configure and preprocessing. The
effort for the separation logic case was higher than in the classi-
cal setting, but not significantly so, and we have acquired a much
stronger postcondition that was difficult to state before. In the sep-
aration logic case, we see potential for improvement in automation.
Much of the additional proof text was verbose, but not hard.

It should be noted that we chose alloc because it constitutes the
worst possible case for this framework: almost every pointer access
is unsafe and needs to be reasoned about. In other frameworks this
is impossible or leads to unsoundness if applied naı̈vely, here it
is merely more work than usual. Once done, client code does not

need to go to the same level of detail to use the pre/post conditions
provided. The complexity is hidden by the framework.

7. Related Work
The directly relevant work in the literature arises from efforts to
verify properties of pointer programs. There are two directions that
are taken—Hoare logic oriented verification in which partial/total
correctness and completeness is the primary goal, with decidability
or the existence of an efficient algorithmic procedure considered
less important, and the opposite approach that strives for automa-
tion, at the expense of only being able to cope with limited language
fragments or properties, the domain of software model checking,
shape analysis, and separation logic decision procedures.

The idea to use separate heaps for separate pointer types and
structure fields in Hoare logic goes back to Burstall [9]. On the ab-
stract level, our multiple typed heaps formalisation is most closely
related to Bornat [8] and Mehta and Nipkow’s [19] work in Is-
abelle, although we exploit Isabelle’s type inference in a different
way. We ground this abstract and efficient reasoning in a detailed
C semantics that is directly applicable to concrete programs. Our
use of HOL types is similar to that of Blume’s [7] encoding of
the C type system in ML that utilises phantom typing to express
pointer types and operators for the purpose of a foreign-function
interface. The Caduceus tool [12] supports Hoare logic verifica-
tion of C programs, including the type-safe part of pointer arith-
metic at this level. We increase the applicability of program verifi-
cation drastically by supporting the unsafe part as well. Separation
logic [16, 25] has been mechanised in theorem proving systems
previously [31, 18]. Again, we provide soundness for program ver-
ification by grounding these abstract, idealised models in a concrete
semantics. We are able to support abstract separation logic notation
and unsafe, low-level pointer manipulations at the same time.

On the concrete level, Norrish [24] presents a very thorough and
detailed memory model of C. Our formalisation has similarities to
exploratory work on C++ in the VFiasco project [15]. The latter
two provide a more precise machine model, while the abstractions
of the previous paragraph allow for more convenient and efficient
reasoning. Our model provides a unified view of both.

The SLAM [2] and BLAST [14] software model checkers ap-
ply predicate abstraction and counter-example driven refinement to
check some safety properties of C programs automatically, such as
correct API usage in device drivers. This is not as useful when veri-
fying fundamental system abstractions, such as memory allocation,
that do not rely on other interfaces that can be factored out or that
feature inductively defined data structures with complex invariants.
It may be possible to tackle some of the guard proof obligations
we encounter such as the absence of null pointer dereferences [5]
with this technique, and efforts exist that seek to integrate software
model checking with proof-based verification [11]. Cook et al [10]
extend the automatic theorem prover in software model checkers to
support the pointer operations and bit-level arithmetic described in
this paper by translating C to propositional logic. Our translation is
substantially different, taking advantage of HOL’s expressiveness
and type system, intended to better support interactive proof.

Shape analysis [20, 26] and separation logic decision proce-
dures [3] can show some structural invariants, such as the absence
of loops in linked lists. At this point in time they tend to be spe-
cialised for limited language fragments or data structures that ei-
ther do not meet our needs or do not provide sufficient benefit to
offset the implementation effort, but there are promising develop-
ments that may improve this situation [1]. The Hob [35] framework
takes the refinement view of verification and allows some of these
analyses to be used on independent modules or at higher-levels of
abstraction, where when applied directly they may fail.

Type-safe C variants like CCured [21] take a dual approach to
memory type-safety, by statically detecting safe pointer usage and
adding runtime checks for those cases where this cannot be verified.
These variants have not gained popularity in real-world systems
implementations, due to a combination of runtime overheads and
the restrictions imposed.

Our longer-term goal is a verified kernel and earlier work on
theorem proving based OS verification includes PSOS [22] and
UCLA Secure Unix [30]. A lack of mature mechanised theorem
proving technology meant that while designs could be formalised,
full implementation proofs were not achieved. Later, KIT [4], part
of the CLI stack, describes verification of process isolation proper-
ties down to object code level, but for an idealised kernel with far
simpler and less general abstractions than modern microkernels.
The VeriSoft project [13] is attempting to verify a whole system
stack, including hardware, compiler, applications, and a simplified
microkernel called VAMOS that is inspired by, but not very close
to, L4. Most closely related to our case study is the successful ver-
ification of the kernel memory allocator from the teaching-based
Topsy operating system by Marti et al [18] in Coq. The major dif-
ference is the heavy use of pointer arithmetic and casting in L4’s
memory allocator that we are able to handle confidently and conve-
niently due to our more detailed semantic model and type encoding.
Marti et al model C memory as nat ⇒ int and translate the code
manually into their tool. Although our model is more detailed, our
proofs are significantly shorter.

8. Future Work and Conclusion
Apart from supporting more language features which is underway,
we see the main directions for future work as automation and in-
tegration. Combining automatic techniques such as decision proce-
dures for separation logic and bit vector arithmetic with interactive
proof, as exemplified by Hob [35], should lead to improved pro-
ductivity and reusability without sacrificing the range of programs
or properties we consider.

We have presented a unified, formal framework for the verifi-
cation of real C programs in an interactive proof assistant without
oversimplifications or strong restrictions on the language. Our work
is a novel combination of concepts that so far have only been well
understood in isolation: Hoare logic verification, separation logic,
interactive theorem proving, detailed dynamic and memory models
for the C programming language, and low-level pointer operations.

We have demonstrated with two case studies that reasoning
on both the abstract and the detailed level is well supported. Our
results indicate that while separation logic might not provide the
amount of direct automation that we are used to, this difference
becomes smaller for larger verification examples.

By grounding separation logic in our memory model, we make
verification of systems level code practical: proof obligations relat-
ing to issues such as inter-type aliasing disappear when the code to
be verified is working within type-safe bounds. When the source
code is not so well-behaved, the framework allows verifiers to drop
to the lower level of multi-byte values and their encodings. This
contrasts with methodologies that would reject such low-level be-
haviour as ill-formed, making verification impossible.

By importing C code directly into our verification environment,
and by tying our logical annotations to the C source, we keep a
close connection between the verification and development activ-
ities. In particular, we aim to avoid the scenario where the devel-
oping code loses its connection with the verification. There is no
point in verifying code that is not going to be deployed. We hope
our still-nascent methodology, which has verifiers and developers
touching the same source files, will make the timely production of
verified software possible.

Acknowledgements We thank Kai Engelhardt, Carroll Morgan,
Manuel Chakravarty, and Rob van Glabbeek for discussions and
for reading drafts of this paper. We are also grateful to David Tsai
who started our work on the memory allocator.

References
[1] Beyond reachability: Shape abstraction in the presence of pointer

arithmetic. In 13th International Symposium on Static Analysis (SAS
2006), volume 4134 of Lecture Notes in Computer Science, pages
182–203. Springer, 2006.

[2] T. Ball and S. K. Rajamani. Automatically validating temporal safety
properties of interfaces. In SPIN’01, Workshop on Model Checking of
Software, volume 2057 of Lecture Notes in Computer Science, pages
103–122, 2001.

[3] J. Berdine, C. Calcagno, and P. O’Hearn. A decidable fragment
of separation logic. In FSTTCS 2004: Foundations of Software
Technology and Theoretical Computer Science, 24th International
Conference, Chennai, India, December 16–18, 2004, 2004.

[4] W. R. Bevier. Kit: A study in operating system verification. IEEE
Transactions on Software Engineering, 15(11):1382–1396, 1989.

[5] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. Checking
memory safety with Blast. In Proceedings of the International
Conference on Fundamental Approaches to Software Engineering
(FASE), volume 3442 of Lecture Notes in Computer Science, pages
2–18. Springer, 2005.

[6] J. Bloch. Nearly all binary searches and mergesorts are bro-
ken. http://googleresearch.blogspot.com/2006/06/
extra-extra-read-all-about-it-nearly.html, June 2006.

[7] M. Blume. No-longer-foreign: Teaching an ML compiler to speak C
“natively”. Electronic Notes in Theoretical Computer Science, 59(1),
2001.

[8] R. Bornat. Proving pointer programs in Hoare Logic. In R. Backhouse
and J. Oliveira, editors, Mathematics of Program Construction (MPC
2000), volume 1837 of LNCS, pages 102–126. Springer, 2000.

[9] R. Burstall. Some techniques for proving correctness of programs
which alter data structures. In B. Meltzer and D. Michie, editors,
Machine Intelligence 7, pages 23–50. Edinburgh University Press,
1972.

[10] B. Cook, D. Kroening, and N. Sharygina. Cogent: Accurate theorem
proving for program verification. In K. Etessami and S. K. Rajamani,
editors, Proceedings of CAV 2005, volume 3576 of Lecture Notes in
Computer Science, pages 296–300. Springer Verlag, 2005.

[11] M. Daum, S. Maus, N. Schirmer, and M. N. Seghir. Integration
of a software model checker into Isabelle. In G. Sutcliffe and
A. Voronkov, editors, Logic for Programming, Artificial Intelligence,
and Reasoning: 12th International Conference, LPAR 2005, volume
3835 of Lecture Notes in Artificial Intelligence, pages 381–395,
Montego Bay, Jamaica, October 2005. Springer.

[12] J.-C. Filliâtre and C. Marché. Multi-prover verification of C programs.
In Formal Methods and Software Engineering, 6th International
Conference on Formal Engineering Methods, ICFEM 2004, Seattle,
USA, volume 3308 of LNCS, pages 15–29. Springer, 2004.

[13] M. Gargano, M. Hillebrand, D. Leinenbach, and W. Paul. On the cor-
rectness of operating system kernels. In Proc. 18th International Con-
ference on Theorem Proving in Higher Order Logics (TPHOLs’05),
pages 1–16, Oxford, UK, 2005.

[14] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software
verification with Blast. In SPIN’03, Workshop on Model Checking
Software, 2003.

[15] M. Hohmuth, H. Tews, and S. G. Stephens. Applying source-code
verification to a microkernel — the VFiasco project. Technical Report
TUD-FI02-03-März, TU Dresden, 2002.

[16] S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for
mutable data structures. In POPL ’01: Proceedings of the 28th

ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 14–26, New York, NY, USA, 2001. ACM Press.

[17] L4Ka Team. L4 eXperimental Kernel Reference Manual Version X.2.
University of Karlsruhe, Oct. 2001. http://l4ka.org/projects/
version4/l4-x2.pdf.

[18] N. Marti, R. Affeldt, and A. Yonezawa. Verification of the
heap manager of an operating system using separation logic. In
Third workshop on Semantics, Program Analysis, and Computing
Environments For Memory Management (SPACE 2006), pages 61–
72, Jan. 2006.

[19] F. Mehta and T. Nipkow. Proving pointer programs in higher-order
logic. Information and Computation, 2005. To appear.

[20] A. Møller and M. I. Schwartzbach. The pointer assertion logic engine.
In Proc. ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’01, June 2001.

[21] G. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer. CCured:
type-safe retrofitting of legacy software. ACM Trans. Prog. Lang.
Syst., 27(3):477–526, 2005.

[22] P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N. Levitt, and
L. Robinson. A provably secure operating system: The system,
its applications, and proofs. Technical Report CSL-116, SRI
International, 1980.

[23] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002.

[24] M. Norrish. C formalised in HOL. PhD thesis, Computer Laboratory,
University of Cambridge, 1998.

[25] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proc. 17th IEEE Symposium on Logic in Computer
Science, pages 55–74, 2002.

[26] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-
valued logic. In POPL ’99: Proceedings of the 26th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
105–118. ACM Press, 1999.

[27] N. Schirmer. Verification of Sequential Imperative Programs in
Isabelle/HOL. PhD thesis, Technische Universität München, 2006.

[28] H. Tuch and G. Klein. A unified memory model for pointers. In
G. Sutcliffe and A. Voronkov, editors, 12th International Conference
on Logic for Programming Artificial Intelligence and Reasoning
(LPAR-12), volume 3835 of LNCS, pages 474–488, 2005.

[29] H. Tuch, G. Klein, and M. Norrish. Verification of the L4 kernel
memory allocator. Formal proof document. http://www.ertos.
nicta.com.au/research/l4.verified/kmalloc.pml, July
2006.

[30] B. Walker, R. Kemmerer, and G. Popek. Specification and verification
of the UCLA Unix security kernel. CACM, 23(2):118–131, 1980.

[31] T. Weber. Towards mechanized program verification with separation
logic. In J. Marcinkowski and A. Tarlecki, editors, Computer Science
Logic – 18th International Workshop, CSL 2004, volume 3210 of
Lecture Notes in Computer Science, pages 250–264. Springer, 2004.

[32] M. Wenzel. Type classes and overloading in higher-order logic. In
E. L. Gunter and A. Felty, editors, Theorem Proving in Higher Order
Logics’97, volume 1275 of LNCS, pages 307–322. Springer, 1997.

[33] M. Wildmoser and T. Nipkow. Certifying machine code safety:
Shallow versus deep embedding. In K. Slind, A. Bunker, and
G. Gopalakrishnan, editors, Theorem Proving in Higher Order Logics
2004, volume 3223 of LNCS, pages 305–320. Springer, 2004.

[34] H. Yang and P. W. O’Hearn. A semantic basis for local reasoning. In
Foundations of Software Science and Computation Structure, pages
402–416, 2002.

[35] K. Zee, P. Lam, V. Kuncak, and M. Rinard. Combining theorem
proving with static analysis for data structure consistency. In Int.
Workshop on Software Verification and Validation, 2004.

http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html
http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html
http://l4ka.org/projects/version4/l4-x2.pdf
http://l4ka.org/projects/version4/l4-x2.pdf
http://www.ertos.nicta.com.au/research/l4.verified/kmalloc.pml
http://www.ertos.nicta.com.au/research/l4.verified/kmalloc.pml

